Arrhythmogenic mutation-linked defects in ryanodine receptor autoregulation reveal a novel mechanism of Ca2+ release channel dysfunction.
نویسندگان
چکیده
Arrhythmogenic cardiac ryanodine receptor (RyR2) mutations are associated with stress-induced malignant tachycardia, frequently leading to sudden cardiac death (SCD). The causative mechanisms of RyR2 Ca2+ release dysregulation are complex and remain controversial. We investigated the functional impact of clinically-severe RyR2 mutations occurring in the central domain, and the C-terminal I domain, a key locus of RyR2 autoregulation, on interdomain interactions and Ca2+ release in living cells. Using high-resolution confocal microscopy and fluorescence resonance energy transfer (FRET) analysis of interaction between fusion proteins corresponding to amino- (N-) and carboxyl- (C-) terminal RyR2 domains, we determined that in resting cells, RyR2 interdomain interaction remained unaltered after introduction of SCD-linked mutations and normal Ca2+ regulation was maintained. In contrast, after channel activation, the abnormal Ca2+ release via mutant RyR2 was intrinsically linked to altered interdomain interaction that was equivalent with all mutations and exhibited threshold characteristics (caffeine >2.5 mmol/L; Ca2+ >150 nmol/L). Noise analysis revealed that I domain mutations introduced a distinct pattern of conformational instability in Ca2+ handling and interdomain interaction after channel activation that was absent in signals obtained from the central domain mutation. I domain-linked channel instability also occurred in intact RyR2 expressed in CHO cells and in HL-1 cardiomyocytes. These new insights highlight a critical role for mutation-linked defects in channel autoregulation, and may contribute to a molecular explanation for the augmented Ca2+ release following RyR2 channel activation. Our findings also suggest that the mutational locus may be an important mechanistic determinant of Ca2+ release channel dysfunction in arrhythmia and SCD.
منابع مشابه
Arrhythmogenic Mutation-Linked Defects in Ryanodine Receptor Autoregulation Reveal a Novel Mechanism of Ca Release Channel Dysfunction
Arrhythmogenic cardiac ryanodine receptor (RyR2) mutations are associated with stress-induced malignant tachycardia, frequently leading to sudden cardiac death (SCD). The causative mechanisms of RyR2 Ca release dysregulation are complex and remain controversial. We investigated the functional impact of clinically-severe RyR2 mutations occurring in the central domain, and the C-terminal I domain...
متن کاملEnhanced store overload-induced Ca2+ release and channel sensitivity to luminal Ca2+ activation are common defects of RyR2 mutations linked to ventricular tachycardia and sudden death.
Ventricular tachycardia (VT) is the leading cause of sudden death, and the cardiac ryanodine receptor (RyR2) is emerging as an important focus in its pathogenesis. RyR2 mutations have been linked to VT and sudden death, but their precise impacts on channel function remain largely undefined and controversial. We have previously shown that several disease-linked RyR2 mutations in the C-terminal r...
متن کاملCPVT-associated cardiac ryanodine receptor mutation G357S with reduced penetrance impairs Ca2+ release termination and diminishes protein expression
Catecholaminergic polymorphic ventricular tachycardia (CPVT) is one of the most lethal inherited cardiac arrhythmias mostly linked to cardiac ryanodine receptor (RyR2) mutations with high disease penetrance. Interestingly, a novel RyR2 mutation G357S discovered in a large family of more than 1400 individuals has reduced penetrance. The molecular basis for the incomplete disease penetrance in th...
متن کاملExtensive Ca2+ leak through K4750Q cardiac ryanodine receptors caused by cytosolic and luminal Ca2+ hypersensitivity
Various ryanodine receptor 2 (RyR2) point mutations cause catecholamine-induced polymorphic ventricular tachycardia (CPVT), a life-threatening arrhythmia evoked by diastolic intracellular Ca2+ release dysfunction. These mutations occur in essential regions of RyR2 that regulate Ca2+ release. The molecular dysfunction caused by CPVT-associated RyR2 mutations as well as the functional consequence...
متن کاملEnhanced basal activity of a cardiac Ca2+ release channel (ryanodine receptor) mutant associated with ventricular tachycardia and sudden death.
Mutations in the human cardiac Ca2+ release channel (ryanodine receptor, RyR2) gene have recently been shown to cause effort-induced ventricular arrhythmias. However, the consequences of these disease-causing mutations in RyR2 channel function are unknown. In the present study, we characterized the properties of mutation R4496C of mouse RyR2, which is equivalent to a disease-causing human RyR2 ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Circulation research
دوره 98 1 شماره
صفحات -
تاریخ انتشار 2006